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The problem:
Higgs detection at the Large Hadron Collider



The LHC:
● Large Hadron Collider -- 27km 

ring

● Cost: ~$4.5 billion



Basic challenge:
● LHC produces 600 million 

collisions/second, generating 

~75TB/sec of data
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Basic challenge:
● LHC produces 600 million 

collisions/second, generating 

~75TB/sec of data

● Like the Biblical flood

● Cut down to something closer to 

Niagara Falls, 1GB/sec of data



What process are we 
looking for anyway?
A Higgs decaying into two photons, i.e 

the H⟶γγ process

Background processes are, for 

instance, gg⟶γγ events



How they do it:

● Nested sets of triggers 

selecting the most 

interesting events 

according to criteria 

determined by 

simulations, 

discarding ~99.999% 

of the events

● May depend in part on 

boosted decision trees 

(BDTs) and multilayer 

perceptrons (MLPs 

aka neural nets, 

DNNs)



How they do it:

● Once you have a set of 

interesting events, you 

still have to classify 

which are signal (real 

Higgs decays, <5% of 

remaining events) and 

which background 

(other Standard 

Model processes, 

>95% of remaining 

events)

● Again typically using 

MLPs/DNNs or BDTs



Challenges of 
BDTs/DNNs in this 
context:

● We don’t have any real 

signal and background 

events

● Training data is all from 

simulated data from 

event generators which, 

while generally accurate, 

can’t be fully trusted, 

and are more likely to be 

incorrect in the very 

high-level correlations 

BDTs and DNNs 

typically employ.



Challenges of 
BDTs/MLPs in this 
context:

● 2nd issue: 

interpretability

● MLPs are notoriously 

like black boxes, and 

while advances have 

been made in 

interpretation, still not 

easy to understand. 

BDTs are better but still 

nontrivial

● Would be better if we 

could directly interpret 

how it works and/or it 

gave us info about the 

important physics



Challenges of 
BDTs/MLPs in this 
context:

● Is there a potentially 

lighter, faster, more 

robust to simulation 

error, and/or more 

interpretable method 

we could use?

● Are there seemingly 

dead-end avenues that 

are opened up by 

newly developed 

special-purpose 

hardware, such as 

quantum annealers?



Our approach: QAML
Quantum annealing for machine learning



Basic idea: 
boosting

● Idea: if each person has 

a (very) rough idea of 

what the correct answer 

is, then polling many 

people will give a pretty 

good guess

● Given a set of weak 

classifiers, each only 

slightly better than 

random guessing, you 

construct a strong 

classifier by combining 

their output





Weak classifiers
● In principle, can take any 

form, so long as it meets 

the aforementioned 

criteria

● What about our case?

● We’re going to build 

weak classifiers using a 

reduced representation of 

the distribution over 

kinematic variables.

● What are said variables?



Our basic kinematic 
variables



What do we want from our weak 
classifiers?

Interpretable/informative Minimal sensitivity to errors in 

the event generators

Fast to evaluate (we’re going to 

have many of them, so they can’t 

be slow)



What do we want from our weak 
classifiers?

Interpretable/informative

Answer: Use only individual 

kinematic variables and their 

products/ratios, not higher-order 

correlations

Minimal sensitivity to errors in 

the event generators

Answer: Ignore higher-order 

correlations, only use functions 

of certain quantiles of the 

distribution, neglect tails

Fast to evaluate (we’re going to 

have many of them, so they can’t 

be slow)

Answer: Use a linear function of 

a few quantiles





Math sketch:
● S is the signal distribution, B 

background, v is the variable

● v

low  

and v

high

 are the 30th 

and 70th percentiles of S, 

b

low 

and b

high

 the percentiles 

on B at those values

● If b

high

< 0.7 then define v

shift

 

= v

low

-v, elseif b

low

> 0.7 then 

v

shift

=v-v

high

, else reject v

● Define v

+1

 and v

-1

 as the 10th 

and 90th percentile of the 

transformed S distribution

● With this formulation, the 

weak classifier is given by

● Do this for all the variables 

and products (or, if flipped 

flipped, the ratio)

-1

1

vlow/high

v+1

v-1

vshift

h(v)



Whither quantum 
annealing?

● So far, I haven’t so much as 

mentioned quantum 

mechanics

● We’re close though!

● The weights w haven’t been 

restricted so far

● Let’s choose to make them 

binary

○ Simpler optimization 

space as the weights are 

less sensitive to 

misspecification of h

○ Enables nice efficiency 

gains for optimization, ie 

conversion to a QUBO 

(quadratic, unconstrained 

binary optimization)

Wi = {0,1}



Constructing a QUBO problem

Minimize:



What can you do with a 
QUBO?
Run simulated annealing or 

parallel tempering algorithms 

(fully classical)

Submit the problem to a 

quantum annealer to solve --- 

D-Wave QA processors solve 

QUBOs natively



Brief overview of quantum annealing



What is quantum 
annealing?

Roughly, one initializes a system of two-state quantum systems 

(qubits), label the states {-1,+1}

Initialize the system in a trivial Hamiltonian H(0) and allow it 

to find the ground state

Slowly change the Hamiltonian, turning off H(0) and 

increasing the strength of target H

P

 until H=H

p

This final Hamiltonian corresponds to your QUBO problem



What is quantum 
annealing?

H(0) =

H

P

 =                        

H

P

 is effectively

σ
i

x

 has a ground state of proportional to  |0〉+  |1〉

H(0) has no interactions, so cools to ground state quickly, and the 

total ground state is an equal superposition over all bitstrings



Why quantum 
annealing?

● Because we can

● We suspect that with an appropriately designed quantum 

annealer one can find the ground state more quickly via 

tunneling than one can through simple thermalization alone

● Hardware and algorithms are developing rapidly, with 

feedback between producers (to date, primarily D-Wave 

Systems) and users, so we could effect the future trajectory 

of development



Our quantum 
annealer

● Built by D-Wave 

Systems in Burnaby, 

CA

● 1152 qubits nominal, 

1098 

functioning/active

● Chilled to 15mK

Hardware graph:

● Red are inactive 

qubits

● Lines are couplers

● Green are active 

qubits



Our quantum 
annealer

● Not fully connect

● But our problem is 

minimizing

That’s fully connected, the 

sum is over all i,j. 

What to do...



Minor embedding:
When a chain 
feels like a qubit

Bind qubits in a chain 

together very tightly, 

with an energy that is J

F 

times stronger than the 

couplings of the 

problem

Split local field across 

all qubits in the chain

Decode states returned 

from the annealer by 

majority vote



Our problems: ● Training dataset is approximately 200k signal and 

background events (each), divided into 20 sets of 10k 

each to estimate random variation from dataset

● Testing set is approximately 100k events

● Signal data generated using 125 GeV Higgs decays 

produced by gluon fusion at 8TeV collisions using 

PYTHIA 6.4

● Background data of Standard Model processes 

generated using SHERPA after restricting to processes 

that meet realistic trigger and detector acceptance 

requirements, p

T

1

 > 32 GeV, p

T

2 

> 25 GeV with 

diphoton mass 122.5 GeV < mγγ < 127.5 GeV and |η|<2.5

● Used training sizes of 100, 1000, 5000, 10k, 15k, and 

20k events, 20 such sets per size, and split evenly 

between signal and background
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background events (each), divided into 20 sets of 10k 

each to estimate random variation from dataset

● Testing set is approximately 100k events

● Signal data generated using 125 GeV Higgs decays 

produced by gluon fusion at 8TeV collisions using 

PYTHIA 6.4

● Background data of Standard Model processes 

generated using SHERPA after restricting to processes 

that meet realistic trigger and detector acceptance 

requirements, p

T

1

 > 32 GeV, p

T

2 

> 25 GeV with 

diphoton mass 122.5 GeV < mγγ < 127.5 GeV and |η|<2.5

● Used training sizes of 100, 1000, 5000, 10k, 15k, and 

20k events, 20 such sets per size, and split evenly 

between signal and background



Results, at long last



Physical insight

20k training events, number of problems (out of 20) where 

variable is active in the ground state configuration of the 

Hamiltonian (the ideal solution)

Three variables survive for extremely high regularization 

strength λ,   
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Physical insight

Why are they the strongest? The major difference between 

signal and background is the creation of a heavy particle, the 

Higgs. It takes a lot of energy to boost perpendicular to the 

beam axis, so Higgs events likely have smaller transverse 

momentum pγγ
T

, and for this to be correlated with the angle to 

the beam axis, which is part of ΔR.



Physical insight

Similarly, with less transverse momentum we expect the two 

photons to have similar momenta, and thus p

T

2

 will be larger 

than typical background events and to be a larger fraction of 

the total diphoton momentum than typical.

Good luck tweaking a neural net or random forest and having 

it lead you toward understanding the physics!



ROC curves

Color key:
D-Wave (DW) - green
Simulated annealing (SA) - 
blue
XGBoost (XGB, decision trees) 
- cyan
Deep Neural Net (DNN) - red

100 training events
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AUROC curves

Color key:
D-Wave (DW) - green
Simulated annealing (SA) - 
blue
XGBoost (XGB, decision trees) 
- cyan
Deep Neural Net (DNN) - red

20k training events



Why does SA 
perform a bit better 
than DW?

Broken chains
DW has them, SA doesn’t



Why does SA 
perform a bit better 
than DW?

Also noise: 
SA runs on logical problem 
with floating point precision

DW runs on hardware with 
errors of ~3%



Why does SA 
perform a bit better 
than DW?

Both problems are being 
addressed in future quantum 
annealers
● More couplings = shorter 

chains = fewer broken 
qubits

● Stronger couplings = 
fewer broken chains

● Lower noise on couplings



Where can we go 
with this?

● QAML can be run on classical hardware as well as 

quantum, enabling tests for larger and more difficult 

problems, more complex decay processes, etc.

● Continuing advances in quantum annealers should 

enable significant improvements in their performance, 

and so should likely stay competitive or exceed classical 

solvers for QAML

● More advanced procedures:

○ Some variables dominate, and is obvious from solutions, we 

could pin them to their value, simplify the Hamiltonian, cut 

the number of needed qubits, and thereby improve 

QA/DW’s capacity to find the ground state configuration

○ Error correction and MAB techniques to improve solutions 

from DW

○ Use QAML for triggers -- fast/simple, reasonably accurate 

at small samples

○ New variants for weak classifiers

○ Quantum boltzmann machines -- very different, but 

promising



QAML outperforms 
standard methods for small 
sizes, is robust to 
generator error, highly 
interpretable, and readily 
implementable on quantum 
and physical annealers.
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